Minimization Principle for the Unit of Electric Charge

Gerald Rosen

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

Received April 23, 1982

The fine-structure constant is given theoretically as $\alpha = (137.03608)^{-1}$ if the eigenvalue of a charge-related operator is minimal for $\pm e/3$ quark states.

Recent work by Morris (1980) has shown that the fine-structure constant cannot have a dynamical origin in the context of nonlinear field theory, as suggested as a possibility many years ago (Rosen, 1939). Thus one is led to seek an internal kinematic principle which fixes the physical value of α .

Under electromagnetic gauge transformations $a_{\mu} \rightarrow (a_{\mu} + \phi, \mu)$, the wave function of a quark or charged lepton transforms $\Psi_{\epsilon} \rightarrow (\exp i\epsilon\phi)\Psi_{\epsilon}$ with the charge $\epsilon = \pm e/3, \pm 2e/3, \pm e$. The wave function can be expressed as

$$\Psi_{\epsilon} = (\exp 2\pi i\epsilon \xi)\psi(x) \tag{1}$$

where $\psi(x)$ is a gauge-invariant Dirac spinor and the scalar field $\xi = \xi(x)$ transforms additively under gauge transformations: $\xi \rightarrow [\xi + (1/2\pi)\phi]$. Observe that Ψ_{z} shown in (1) is an eigenstate of

$$D \equiv -2\frac{\partial^2}{\partial \xi^2} \tag{2}$$

In terms of the latter operator, the physical value of α obtains from the condition that the eigenvalue of

$$\left(D^5 - \frac{2\pi}{3}D\right) \tag{3}$$

be minimal for quark states corresponding to the smallest unit of charge, $\varepsilon = \pm e/3$.

Proof of the Minimization Principle. From (1) and (2) it follows that $D\Psi_{\epsilon} = \lambda\Psi_{\epsilon}$ with $\lambda = 8\pi^2 e^2/9$ for $\epsilon = \pm e/3$. Given by $[\lambda^5 - (2\pi/3)\lambda]$, the eigenvalue of (3) is a minimum¹ for $d/d\lambda$ $[\lambda^5 - (2\pi/3)\lambda] = 0$, i.e., $\lambda = (2\pi/15)^{1/4} = 0.80449278$. Hence, one obtains

$$e^{2} = \frac{9\lambda}{8\pi^{2}} = (10.904985)^{-1}$$
(4)

and

$$\alpha \equiv \frac{e^2}{4\pi} = (137.03608)^{-1} \tag{5}$$

More precisely, the minimization principle gives the fine-structure constant $\alpha = (9/32\pi^3)(2\pi/15)^{1/4}$.

REFERENCES

Morris, T. F. (1980). *Physics Letters*, **93B**, 440. Rosen, N. (1939). *Physical Review*, **55**, 94.

¹Since (2) is the square of the self-adjoint operator $i\sqrt{2} \partial / \partial \xi$, the eigenvalue spectrum of (2) is real and non-negative; thus negative (or imaginary) values of λ are precluded.